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Abstract The number of applications running over com-

puter networks has been increasing tremendously, which

increased the number of packets running over the network

as well leading to resource contention, which ultimately

results in congestion. Congestion increases both delay and

packet loss while reducing bandwidth utilization and

degrading network performance. Network congestion can

be controlled by several methods, such as random early

detection (RED), which is the most well-known and widely

used method to alleviate problems caused by congestion.

However, RED and its variants suffer from linearity and

parametrization problems. In this paper, we proposed a

new method called fuzzy logic RED (FLRED), which

extends RED by integrating fuzzy logic to overcome these

problems. The proposed FLRED method relies on the

average queue length (aql) and the speculated delay (DSpec)

to predict and avoid congestion at an early stage. A dis-

crete-time queue model is used to simulate and evaluate

FLRED. The results showed that FLRED outperformed

both RED and effective RED (ERED) by decreasing both

delay and packet loss under heavy congestion. Compared

with ERED and RED, FLRED decreased the delay by up to

1.5 and 4.5% and reduced packet loss by up to 6 and 30%,

respectively, under heavy congestion. These findings sug-

gest that FLRED is a promising congestion method that can

save network resources and improve overall performance.

Keywords Congestion control � Network performance �
Active queue management � Fuzzy logic � RED

1 Introduction

Computer networks have propagated worldwide, starting

from home networks to multi-branches organization net-

works. Huge amounts of data are exchanged among net-

work users in the form of packets. In their journey from

source to destination, packets travel over several network

links and switches/routers [1]. When numerous sources

transmit over the same intermediate link, packets will be

queued in the routers’ buffer and wait for their turn to be

transmitted. However, in view of the limitations in network

resources (link capacity and buffer size), new incoming

packets will be dropped once the number of packets

exceeds the resources capacity. Figure 1 shows a poten-

tially congested router’s buffer. A network wherein packet

dropping occurs frequently is considered a congested net-

work [1–3].

Tail-drop method is the default behavior of computer

networks in managing congestion at the router’s buffer.

This method employs a first-in first-out (FIFO) approach,

in which arriving packets are dropped once the buffer

becomes completely full. Figure 2 illustrates a tail-drop

buffer. When packets arrive regularly, tail drop is consid-

ered an efficient method of exploiting a buffer, because it

ensures that all slots at the buffer are used [3, 4]. However,

most computer network traffic arrives irregularly (i.e.,

bursty traffic), which involves the quick transmission of
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data blocks followed by idle periods [3, 5, 6]. Figure 3

depicts the bursty traffic of a computer network.

Given the bursty traffic nature of computer networks,

queues are rapidly filled and then emptied again. Bursty

traffic causes several problems, particularly when a tail-

drop buffer is used. These problems include: (1) increased

packet loss resulting from the overwhelmed buffer under

heavy load; (2) increased packet transmission delay

because of the long queue at the router buffer under heavy

load; (3) wasted link bandwidth caused by the repeated

retransmission of dropped packets; (4) possible network

collapse on prolonged periods of congestion; (5) increased

chances of transmission control protocol (TCP) global

synchronization when considerable amounts of packets are

dropped at the same instant; consequently, hosts simulta-

neously decrease their sending rates while increasing their

sending rates, leading to cyclical periods of heavy load

followed by periods of poor utilization of a link capacity;

and (6) TCP starvation problem caused by the TCP global

synchronization problem; that is, when hosts reduce their

TCP flow rates during congestion, non-TCP flows occupy

the buffer, leaving no place for TCP flows [7–11].

Congestion control is the term used to describe the

efforts to predict and avoid congestion. Unfortunately, tail

drop causes several problems. Active queue management

(AQM) methods are proposed as a robust alternative for

controlling the congestion at the route’s buffer. AQM

methods generally predict congestion at an early stage by

monitoring the queue at the buffer. When the queue at the

buffer develops and congestion is about to occur, AQM

methods randomly drop incoming packets on the calculated

dropping probability Dp. In response, hosts lessen their

sending rates before the buffer is saturated. Consequently,

AQM methods reduce the delay and packet loss resulting

from the saturated buffer and alleviate the impact TCP

global synchronization and TCP starvation by dropping

packets randomly [3, 12–14]. Typical AQM methods

include random early detection (RED) [5], gentle RED

(GRED) [15], dynamic GRED (DGRED) [13], effective

RED (ERED) [16]. Other AQM methods utilize fuzzy

logic, such as fuzzy explicit marking (FEM) [17], RED

fuzzy logic (REDFL) [18], and the intelligent rate (In-

telRate) controller [12]. However, existing AQM methods

cannot efficiently handle or predict the congestion early

enough, which degrades network performance [2, 13, 14].

This paper proposes a new method that can predict con-

gestion at an early stage to overcome problems resulting

from the tail drop by improving network performance (e.g.,

delay and packet loss) and to alleviate the effects of TCP

global synchronization and TCP starvation. The proposed

method achieves this goal by integrating fuzzy logic with

two congestion prediction factors, namely speculation

delay and average queue length (aql). The detailed con-

tributions of this method are discussed in Sect. 3.

The remainder of this paper is organized as follows.

Section 2 clarifies the congestion problem, discusses the

main methods for congestion control, and enumerates the

key reasons for designing a new AQM method. Section 3

describes the proposed method and discusses how it pre-

dicts congestion at an early stage. Section 4 shows the

environment in which the proposed method is implemented

and evaluated. Section 5 presents the analyses of the
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performance results of the proposed method. Finally,

Sect. 6 concludes the paper.

2 Related works and problem definition

Congestion control is a major issue in computer networks

investigated by many researchers since computer networks

emerged. This section discusses the main and most widely

known congestion control methods related to this work.

RED [5] is the first method established to manage

congestion control issues. Floyd and Jacobson [6] proposed

RED in 1993 to overcome the aforementioned problems

arising from the traditional tail-drop method. Similar to

other AQM methods, the core idea of RED is to predict the

congestion before a buffer overflows by calculating the aql

of the router buffer using the weighted queue (Wq). Packets

are then dropped before the buffer overflows according to

the predetermined Dp value. The aql is compared to two

thresholds at the router’s buffer (min and max), and the

packets are then dropped according to the following three

rules. (1) If aql\min, then no packets are dropped. (2) If

min\ aql\max, then packets are dropped based on a

certain equation. (3) If aql[max, then all incoming

packets are dropped. In this manner, RED drops packets

proportionally to aql. In addition, packets are dropped

randomly, making RED a suitable solution for bursty

traffic. These findings suggest that RED avoids the global

synchronization and TCP starvation problems that resulted

from the tail-drop method. In addition, compared with the

tail drop, RED exhibits a higher throughput and a lower

delay and packet loss. Figure 4 illustrates the RED buffer.

GRED [15] is another method proposed by Floyd in

2000 to address network congestion. Similar to RED,

GRED predicts the congestion of the router’s buffer at an

early stage before the buffer overflows by calculating the

aql. Unlike RED, GRED uses three thresholds [min, max,

and double max (2 �max)]. Therefore, the rules for packet

dropping are as follows. (1) If aql\min, then no packets

are dropped. (2) If min\ aql\max, then packets are

dropped based on a certain equation. (3) If

max\ aql\ double max, then packets are dropped based

on a certain equation but with a higher probability than rule

two. (4) If aql[ double max, then all incoming packets are

dropped. The simulation showed that GRED outperforms

RED because of the additional threshold (double max).

Baklizi et al. [13] extended GRED and developed DGRED

in 2013. Both methods follow the same dropping rules and

core strategy of using the same three thresholds in GRED.

However, unlike GRED, DGRED uses dynamic max and

double-max thresholds to keep the aql between the min and

max thresholds at a specific calculated value called target

aql (Taql). Performance analysis showed that DGRED

outperforms both RED and GRED.

As shown, RED, GRED, and DGRED depend on the

average size (aql), rather than the instantaneous size of the

queue to calculate Dp. Thus, these algorithms respond to

the long-term status, instead of the current status of the

buffer. On the one hand, when the incoming traffic sud-

denly decreases, the instantaneous queue length instantly

declines as the aql gradually lessens. If the aql is high, then

incoming packets are dropped even if the instantaneous

queue length is small or the buffer is empty. On the other

hand, when the incoming traffic suddenly increases, the

instantaneous queue length instantly rises although the aql

gradually increases. Consequently, the queue becomes

overwhelmed, and no packet is dropped because the min-

imal aql (less than the min threshold) [5, 16, 19]. Figure 5

depicts the aql versus the instantaneous queue length.

To solve these issues, several algorithms have used the

instantaneous queue (q) size to predict congestion. Ott et al.

[20] established stabilized RED (SRED), which uses the
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number of flows and q to detect and avoid congestion. If the

q size exceeds a specific level, packets are dropped

according to the probability calculated from the number of

flows to avoid congestion. Thus, the packet dropping is

directly proportional to the number of flows. Jamali et al.

[21] proposed another q-based algorithm in 2014. The

algorithm proposed is an improvement of RED, and it

adaptively and proportionally updates RED’s thresholds to

the current q size. The remaining parts of the proposed

algorithm are the same as the original RED. As shown, these

algorithms depend on the q instead of the aql. Therefore,

they respond to the current rather than the long-term status

of the buffer, and they can successfully predict congestion

and avoid the aforementioned problems. However, as men-

tioned, internet traffic is bursty by nature, causing the buffers

to fill up quickly and then to become empty again. There-

fore, if the buffer is empty most of the time and the aql is

small, then the network is not congested and the hosts should

not be informed to reduce their sending rates [3, 5, 16].

Accordingly, solving the aql problem by using q produces

new problems. Thus, researchers proposed the new trend of

combining q and aql to calculate the Dp. Abbasov and

Korukoglu [16] proposed ERED in 2009. ERED uses both

q and aql to predict the congestion at the router buffer. The

dropping rules used by ERED are as follows. If min\ -

aql\max and q[min, then packets are dropped based on

the same equation as RED. If aql\min and

q\ 1.75 9 max, then packets are dropped with a high

probability. The remaining parts of ERED are the same as

RED. Performance analysis showed that ERED is an out-

standing method that outperforms most, if not all, of the

prominent AQM methods, including RED [5], REM [22],

Blue [23], SRED [20], and flow RED (FRED) [24].

In summary, existing AQM methods have successfully

addressed the problems resulting from tail-drop method up

to a certain extent. However, these methods, as well as many

other AQM methods, assume the stable status of the Internet

and the occurrence of a linear traffic arrival and departure.

However, the status of the Internet constantly changes over

time because of the bursty nature of the traffic (not linear)

[5, 25, 26]. Another important issue is that these methods

require substantial parameter settings. In RED and all its

variants for example, at least four parameters should be

initialized, namely min and max thresholds, Dp, and Wq

[1, 17, 25]. The performance of AQM methods is highly

sensitive to these parameters. As mentioned in [26, 27], even

if the values of the proposed parameters suit a certain sce-

nario, the applicability of the AQM method is limited only

to that scenario and does not cover the dynamic changing

conditions of actual scenarios. Accordingly, assuming the

linear nature of Internet traffic and changing the parameter

values are inefficient solutions making it difficult to obtain a

stable and robust method [25, 26]. To avoid the linearity and

parameterization problems, fuzzy logic is adopted for con-

gestion control. Fuzzy logic is a methodology that deals with

nonlinear systems, uncertain parameters, and imprecise

measurement and modeling [1, 28]. Fuzzy logic was initially

proposed for congestion with ATM networks and was sub-

sequently used in IP networks to reduce packet loss rate and

improve utilization [28].

Chrysostomou et al. [17] proposed FEM. FEM is one of

the first methods that used fuzzy logic to overcome the

limitations of RED and its variants. Evidently, FEM is an

explicit congestion control method that works with differ-

entiated services (DiffServ) to control congestion using

fuzzy logic. The method utilizes linguistic knowledge to

precisely identify network status and mark packets

accordingly. FEM also addresses the limitations of RED

and its variants by avoiding unnecessary parameterization.

The results showed that FEM performs better in different

scenarios without any parameterization.

Liu et al. [12] proposed the IntelRate controller. Similar

to FEM, the IntelRate controller uses fuzzy logic to over-

come the linearity and parametrization problems in RED

and its variants. Similar to SRED, the IntelRate controller

uses q to predict congestion and to calculate probability

drop. However, IntelRate uses q with fuzzy logic to over-

come the linearity and parametrization problems in SRED.

The IntelRate controller is simulated using the well-known

OPNET modeler. The results showed that the IntelRate

controller is robust and effective, as it improves both

throughput and link utilization as it reduces delay.

Woodward et al. [18] proposed the REDFL. This method

extends RED by integrating fuzzy logic within the RED

algorithm. In addition, REDFL added another congestion

indicator Packet loss to aql, the only indicator used by RED.

Thus, REDFL uses aql and Packet loss as input linguistic

variables for a fuzzy logic system. This process reduces the

extensive parameter dependency and settings in RED. The

output of the used fuzzy logic system is the packet dropping

rate used to alleviate congestion. REDFL is simulated using

the discrete-time queue model and compared with the RED

algorithm. The results showed that REDFL outperforms

RED in terms of average queue length, throughput, packet

loss rate, and packet dropping probability.

In addition to the above mentioned methods, several

other congestion methods employ fuzzy logic with various

input linguistic variables to improve performance. How-

ever, none of these methods efficiently managed or pre-

dicted congestion early [1, 2, 13]. The present paper

extends RED using fuzzy logic with two new input lin-

guistic variables. However, aql and speculated delay

(DSpec) are used as input linguistic variables instead of the

aql and Packet loss used in REDFL. Delay is an important

measurement and indicator of network congestion. As

shown in the following subsections, the use of speculated
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delay (DSpec) and aql as input linguistic variables of the

proposed FLRED (fuzzy logic RED) method indicates

remarkable congestion management, especially given

heavy congestion. Furthermore, to avoid linearity and

parameterization, the proposed FLRED method reduces

both packet loss and delay, improves bandwidth utilization,

and avoids both global synchronization and TCP

starvation.

3 Proposed FLRED method

This section discusses the design of the proposed FLRED

method. FLRED employs fuzzy logic to address the prob-

lems of congestion control methods. Fuzzy logic is partic-

ularly used to overcome the linearity and parametrization

existing in most current congestion control methods. In

addition, FLRED uses two congestion indicators, namely aql

and DSpec, to improve congestion control performance. aql

and DSpec are two effective indicators for predicting and

avoiding congestion at an early stage, as will be discussed in

the following two subsections. These two indicators (aql and

DSpec) are used to calculate the Dp for incoming packets

within a fuzzy inference process (FIP). Figure 6 shows the

flowchart of using FIP to calculate the Dp and other values.

Section 3.1 discusses the calculation of the aql. Section 3.2

discusses the calculation of the DSpec. Section 3.3 describes

how FLRED utilizes fuzzy logic.

3.1 Low-pass filter aql

aql is one of two variables aside from DSpec used to cal-

culate Dp in FLRED. This variable is the calculated

average value of q using a low-pass filter (weighted queue

Wq), in which the effect of a new value to the average can

be determined as needed [5]. When a low-pass filter is

used, a sudden increase in the queue size caused by bursty

traffic or temporary congestion will not cause a noticeable

increase in aql. Therefore, unnecessary packet dropping is

avoided in temporary congestion cases, because aql is

considered over a sufficient period time [1]. Equation 1 is

used to calculate aql using a low-pass filter.

aql ¼ ð1�WqÞ � aqlþW � q ð1Þ

Given minimal Wq, the aql responses to q changes

slowly. Therefore, a congestion method will not predict the

congestion at early stages. When Wq is massive, the tem-

porary congestion will not be filtered by the averaging

procedure. As recommended by RED and based on several

calculations, Wq is set to 0.002 in the proposed FLRED for

all experiments [5].

3.2 Delay speculation

Delay refers to the time taken by a packet to travel from

source to destination. Delay is one of the main factors

affecting network performance quality. High network delay

lessens network performance and vice versa. The main

types of network delays are in processing, transmission,

propagation, and queuing. This study focuses on queuing

delay, which denotes the waiting time of a packet at the

router’s buffer queue before being transmitted; queueing

delay depends on the length of the queue. Long queues

cause high queuing delays and vice versa [1, 29]. There-

fore, a high queuing delay indicates network congestion. In

the proposed FLRED method, DSpec is the other variable

aside from aql used to predict congestion and calculate DP.

Little’s law [30], which predicts the packet waiting time in

the queue, is derived and used to calculate DSpec according

to arrival (Arr) and departure rates (Dep), as given in Eq. 2.

DSpec ¼ ðArrSpec � DepSpecÞ � q ð2Þ

where ArrSpec is the arrival rate speculation and DepSpec is

the departure rate speculation. DSpec increases and

decreases with the arrival rate. In contrast, DSpec decreases

when the departure rate increases and increases when it

decreases. The ArrSpec is a low-pass filter of the average
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arrival rate over the previous and current packet arrival

rates. Equation 3 is used to calculate ArrSpec.

ArrSpec ¼ Arrt� 1 ð1�WarrÞ þ Arrt ðWarrÞ ð3Þ

where t is the time value, Arrt21 is the previous value of

the packet arrival rate, Arrt is the current value of the

packet arrival rate, and Warr is the weight parameter. The

DepSpec is a low-pass filter of the average departure rate

over the previous and current packet departure rates.

Equation 4 is used to calculate DepSpec.

DepSpec ¼ Dept�1 ð1�WdepÞ þ Dept ðWdepÞ ð4Þ

where Dept-1 and Dept are the previous and current values

of the packet departure rate, respectively. The used low-

pass filter contributes more to the previous rates of both

ArrSpec and DepSpec. This is achieved by setting both Warr

and Wdep values below 0.5. Accordingly, the calculated

outputs of both ArrSpec and DepSpec change slightly when

the rate changes over time. In the proposed FLRED

method, several weight values (1.0, 0.9, 0.8, …, 0.1, 0.09,

0.08, …, 0.0.01) are tested. Finally, the weight value for

both Warr and Wdep is set to 0.2.

The optimum value of DSpec is gained when Arr is equal

to Dep. A large delay occurs when the value of Arr exceeds

Dep and the buffer (q) is not empty. A tiny delay occurs

when the value of Arr is less than Dep. As shown in Fig. 7,

DSpec is proportional to the term (ArrSpec - DepSpec).

3.3 FLRED fuzzification

As an FIP-based method, FLRED is implemented in four

sequential steps: fuzzification, rule evaluation, aggregation,

and defuzzification. Figure 6 shows the four sequential

steps of the FIP process.

3.3.1 Step 1: Fuzzification

The first step of the FIP process is fuzzification, in which

linguistic terms are extracted from the input crisp of the

variables, aql and DSpec, and converted to fuzzy sets. This

study uses three variables with three fuzzy sets as follows:

aql: {null, trivial, normal, large}, DSpec: {zero, trivial,

normal, large}, and Dp: {zero, trivial, average, long}. The

commonly used triangular is used to formulate the input

and output linguistic variables. Figure 8 shows the mem-

bership function of the aql input linguistic variable. Fig-

ure 9 depicts the membership function of the DSpec input

linguistic variable. Figure 10 shows the membership

function of the Dp output linguistic variable.

The membership functions for aql, DSpec, and Dp have

the following boundaries: aql: [{0, 0, 0.3, 0.4}, {0.3, 0.4,

0.4, 0.5}, {0.4, 0.5, 0.7, 0.8}, {0.7, 0.8, 1.0, 1.0}], DSpec [{0,

0, 0.3, 0.4}, {0.3, 0.4, 0.4, 0.5}, {0.4, 0.5, 0.7, 0.8}, {0.7,

0.8, 1.0, 1.0}], and Dp: [{0, 0, 0.005, 0.01}, {0.005, 0.01,

0.01, 0.02}, {0.01, 0.02, 0.2, 0.4}, {0.2, 0.4, 1.0, 1.0}].
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After creating the membership functions, the linguistic

terms in the fuzzy set are obtained from the corresponding

crisp values. Several linguistic terms with different prob-

ability values can be obtained from one input crisp value.

3.3.2 Step 2: Rule evaluation

The second step of the FIP process is rule evaluation,

which defines and evaluates the rules employed to extract

the linguistic terms from the previous step. Table 1 shows

the rules employed in the proposed FLRED method. The

input terms are shown in the header of the rows and col-

umns of the table. The output terms are shown in Table 1.

3.3.3 Step 3: Aggregation

The third step of the FIP process is aggregation, during

which the probabilities of the output linguistic terms

obtained by the applied rules are calculated. Moreover, the

repetitions of the same linguistic terms obtained by these

rules, probably with different probabilities, are determined

by producing a single probability value for each term. This

step takes the probability values of the input linguistic

terms obtained in the fuzzification step and produces a

probability for the linguistic term of the output variable, as

given in Eq. 5. As expected, the same linguistic term for

the output variable may be obtained because the rules with

the same output term are applied. These identical terms are

aggregated in a single output with an underlying term and a

probability value that is the maximum among the calcu-

lated probabilities for that term.

lA;B ¼ max ðlAðxÞ; lBðxÞÞ ð5Þ

where lA (x) is the probability value of the first input vari-

able, aql, and lB (x) is the probability value of the second

input variable, Dspec. The maximum value of similar output

linguistic terms extracted from different rules is considered.

3.3.4 Step 4: Defuzzification

The fourth and final step of the FIP process is defuzzifi-

cation, wherein the output linguistic variable values are

produced based on the fuzzy set. Center of gravity (COG)

method is employed for defuzzification [31]. COG locates

the center point among all the output linguistic terms.

Given that several output linguistic terms are expected to

be extracted as several rules, Eq. 6 is used to calculate the

final output crisp result.

COG ¼
Pb

x¼a l
AðxÞx

Pb
x¼a l

AðxÞ
ð6Þ

where the numerator is the probability of each linguistic

term for the output variable as calculated in the aggregation

step multiplied by the values of the term in the fuzzy set.

Meanwhile, the denominator is the number of values for

that term in the fuzzy set. Figure 11 shows the algorithm of

the proposed FLRED method.

4 Simulation

This section clarifies the simulation model in which the

FLRED method was evaluated. FLRED was simulated

using the widely used discrete-time queue model. The

discrete-time queue model is an inexpensive method for

testing whether a design of a proposed system works and

evaluating the performance of that system. This model uses

time slots (equal time periods) for a given system perfor-

mance evaluation [1, 32]. A packet might arrive, depart, or

both (arrive and depart) in a single time slot. The discrete-

time queue model has been used by several AQM methods

that calculate the performance factors at each time slot

[1, 2, 18].

The simulation models of the proposed FLRED, RED,

and ERED were implemented on a single router buffer with

a capacity of 20 packets and a FIFO queue. As recom-

mended, the min and max thresholds were set to 3 and 9 for

the RED and ERED methods, respectively. A total of

2,000,000 slots of time were used to perform the experi-

ments. The first 800,000 slots were used as warm-up and

were not counted in the measurement of the evaluation

Table 1 Set of fuzzy logic rules

DSpec aql

Null Trivial Normal Large

Zero Zero Zero Zero Long

Low Zero Zero Normal Long

Moderate Zero Normal Long Long

High Zero Normal Long Long

The Proposed FLRED Algorithm

1. Initialize FuzzySets,
2. Initialize FuzzyRules
3. with packet arrival
4.       If q= =0 THEN aql:=(1-w)f(time- q_time) * aql
5.       If q <> 0 THEN aql:= (1-w)* aql + w *q
6.       DSpec = (ArrSpec - DepSpec) * q
7.       Fuzzyaql = Fuzzify (aql)
8.       FuzzyDSpec = Fuzzify (DSpec)
9.       GroupFuzzyDp = Appy Rules(Fuzzyaql, FuzzyDSpec)
10.     FuzzyDp = Aggregate
11.     Dp = De-fuzzify (FuzzyDp)
12.     Drop packet with Dp
13.     If QueueLenth ==0
14.           q_time=time

The Proposed FLRED Algorithm

1. Initialize FuzzySets, 
2. Initialize FuzzyRules
3. with packet arrival
4.       If q= =0 THEN aql:=(1-w)f(time- q_time) * aql
5.       If q <> 0 THEN aql:= (1-w)* aql + w *q
6.       DSpec = (ArrSpec - DepSpec) * q
7.       Fuzzyaql = Fuzzify (aql)
8.       FuzzyDSpec = Fuzzify (DSpec)
9.       GroupFuzzyDp = Appy Rules(Fuzzyaql, FuzzyDSpec)
10.     FuzzyDp = Aggregate
11.     Dp = De-fuzzify (FuzzyDp)
12.     Drop packet with Dp
13.     If QueueLenth ==0
14.           q_time=time

Fig. 11 Algorithm of the proposed FLRED method
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parameters. Consequently, the system achieved a

stable state and therefore a more accurate performance.

The remaining 1,200,000 slots were used to calculate the

performance metrics. Three different arrival rates (0.93,

0.5, and 0.33) were utilized in the remaining 1,200,000

time slots to simulate different congestion scenarios, as will

be demonstrated in the following section. Meanwhile,

departure rate was fixed at 0.5. FLRED was implemented

on Java using NetBeans Integrated Development Envi-

ronment (IDE) 8.1 under 64 bits Windows 10, in Intel Core

i3 2.10 GHz processor, and 6 GB RAM.

The experiment consisted of several steps to obtain the

results. In step 1, the parameters were initialized to specific

values. In step 2, a packet was generated with a certain

probability and sent to the queue in a time slot. In step 3,

the generated packet might be dropped, lost, or queued

depending on the queue status. Meanwhile, a packet might

be departed. Steps 1 and 2 were performed at each time

slot. Finally, the results were collected and reported. These

steps are depicted in Fig. 12.

5 Performance analysis

This section presents the performance evaluation of the

proposed FLRED. To my knowledge, no fuzzy-based

congestion method is available online for comparison. For

example, a number of papers provide a figure showing the

membership functions of the algorithm in general but not

the exact boundary of the membership functions. Other

papers provide either the membership functions or the rules

set, whereas other studies give neither. In the present paper,

the proposed FLRED method is described in detail,

including the boundaries of the membership functions, the

rules set, and the parameter values. Thus, the proposed

method can be used as basis for comparison with any new

proposed fuzzy-based congestion method. Furthermore,

FLRED is compared with two of the most widely known

and commonly used AQM methods (without fuzzy),

namely RED and ERED.

FLRED was evaluated and compared with RED and

ERED in four different scenarios in terms of packet loss,

packet dropping, and delay. Packet loss occurs because of

buffer overflow. Packet dropping was performed by a

congestion method before a router buffer becomes full to

avoid congestion [1, 5, 13]. The first and second scenarios

assumed heavy congestion, in which the packet arrival

rates were 0.98 and 0.93, respectively, whereas the

departure rate was only 0.5 for both scenarios. Figure 13a,

b shows the packet losses and packet dropping ratios,

respectively, of FLRED, RED, and ERED for the first

scenario. Figure 14a, b presents the packet losses and

packet dropping ratios, respectively, of FLRED, RED, and

ERED for the second scenario. Compared with RED and

ERED, FLRED displays less packet loss. However,

FLRED drops more packets than RED and ERED because

FLRED predicts the congestion at an earlier stage than both

methods under heavy congestion. When both packet loss

and packet dropping are aggregated, the total packets

missed are nearly the same. However, this does not mean

Begin

End

Parameter Ini�aliza�on

Generate Packet

Packet departed

Packet lost, dropped, 
queued-in

Finish

Results Repor�ng

Yes

No Each Time 
Slot

Begin

End

Parameter Ini�aliza�on

Generate Packet

Packet departed

Packet lost, dropped, 
queued-in

Finish

Results Repor�ng

Yes

No Each Time 
Slot

Fig. 12 Flowchart of the experiment steps

Fig. 13 Heavy congestion (first scenario): a packet loss ratio,

b packet dropping ratio, c delay for heavy congestion (first scenario)
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that the three methods exhibit the same performance.

Packet dropping shows the ability of a congestion method

to predict the congestion at early stage and to control the

number of dropped packets and from which source to drop.

Consequently, delay was reduced, bandwidth utilization

was improved, and both global synchronization and TCP

starvation problems were overcame. Packet loss means that

every packet is thrown when the buffer is overwhelmed.

Thus, a congestion method cannot predict the congestion

early enough to control the number of dropped packets or

even the source of the dropped packets. Consequently,

delay was extended, bandwidth utilization becomes inef-

ficient, and both global synchronization and TCP starvation

problems worsened [7–11]. Figure 13c shows the delays of

FLRED, RED, and ERED for the first scenario. Figure 14c

indicates the delays of FLRED, RED, and ERED for the

second scenario. As shown, FLRED shows less delay than

RED and ERED, suggesting that FLRED outperforms both

RED and ERED under heavy congestion, because it redu-

ces delay and drops more packet than lost packets than

RED and ERED.

The third scenario assumed a light congestion, in which

packet arrival and departure were both 0.5. In theory,

neither packet loss nor packet dropping should occur

because the packet arrival and departure were equal.

However, packet loss and packet dropping inevitably occur

because of the bursty nature of the network traffic. Fig-

ure 15a, b shows the packet loss and packet dropping

ratios, respectively, of FLRED, RED, and ERED for this

scenario. FLRED shows a slightly higher packet loss and

fewer packet drops than RED and ERED. Figure 15c

shows the delays of FLRED, RED, and ERED for this

scenario. As shown, FLRED shows a greater delay than

RED and ERED. Thus, RED and ERED exhibited a

slightly better performance than FLRED under light

congestion.

The fourth scenario assumed no congestion at all, in

which the packet arrival and departure rates were 0.33 and

0.5, respectively (the arrival rate was less than the depar-

ture rate). Figure 16a, b shows the packet loss and packet

dropping ratios, respectively, of FLRED, RED, and ERED

for this scenario. FLRED, RED, and ERED show the same

packet dropping and packet loss probabilities that are equal

to 0, because the arrival rate was less than the departure

rate, which indicated the lack of congestion. Figure 16c

shows the delays of FLRED, RED, and ERED for this

scenario. As shown, FLRED was slightly less delay than

RED and ERED. Accordingly, FLRED outperformed both

RED and ERED in the no heavy congestion scenario.

A congestion method mainly aims to control the traffic

flow, especially when heavy congestion occurs [1, 3, 13].

As shown, the proposed FLRED remarkably outperformed

both RED and FLRED under heavy congestion scenarios

(first and second scenarios), which were the key scenarios

for evaluating a congestion method. This displayed

approximately the same performance under light and no

congestion, which were the secondary scenarios for eval-

uating a congestion method. FLRED reduced both packet

loos and delay, improved bandwidth utilization, and avoi-

ded both global synchronization and TCP starvation.

Fig. 14 Heavy congestion (second scenario): a packet loss ratio,

b packet dropping ratio, c delay for heavy congestion (second

scenario)
Fig. 15 Light congestion (third scenario). a packet loss ratio,

b packet dropping ratio, c delay for light congestion (third scenario)
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Accordingly, FLRED is a promising congestion method

that can be adopted to control the traffic flow and conse-

quently save network resources and improve overall

performance.

6 Conclusion

Congestion control is one of the major issues in computer

networks that has been widely investigated from the

emergence of computer networks. This paper proposed a

new congestion control method called FLRED. FLRED

extends RED, the most well-known and widely used con-

gestion control method. FLRED uses fuzzy logic to avoid

the linearity and parametrization problems in RED. In

addition, FLRED uses two congestion indicators (aql and

DSpec) to predict and avoid congestion at an early stage.

FLRED, RED, and ERED were simulated, evaluated, and

compared using the widely used discrete-time queue model

under Java environment. The simulation result showed that

FLRED outperformed both RED and ERED by decreasing

both delay and packet loss, particularly given heavy con-

gestion. FLRED is a promising congestion method that can

save network resources and improve overall performance.

Future studies can explore a wide range of topics on

FLRED. The value of aql is highly dependent on network

characterization. Therefore, further investigation should be

conducted on finding the optimum aql value. In addition,

other congestion indictors aside from aql and DSpec should

be considered. Furthermore, a discrete-time queue model

was used in this study to implement FLRED. Thus, a real

environment implementation in the presence of a TCP

protocol can be performed. Moreover, the conduct of

FLRED under multi-hop networks and wireless networks

would also be interesting to evaluate.
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